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Abstract. The resistive susceptibility zR( p )  of Harris and Fisch is expanded graphically 
for the directed simple cubic bond problem as a power series in the diode density p up to 
p". Standard Pad6 analysis shows that xR( p )  diverges with the exponent yR = 2.70 f 0.04 
and using a scaling relation the exponent t for the conductivity of the infinite cluster is 
estimated to  be t = 1.29 * 0.02. 

In a previous letter (Bhatti and Essam 1984), the critical exponent for the resistive 
susceptibility of a random mixture of diode and insulators on the square lattice was 
calculated. The resulting value of the conductivity exponent t was in good agreement 
with the Monte Carlo calculation of Arora et a1 (1983), but slightly inconsistent with 
that of Redner and Muller (1982). So far there have been no estimates of t for 
three-dimensional lattices and here we extend our two-dimensional work to bond 
percolation on the simple cubic lattice. A first estimate of the critical probability pc, 
for this problem was obtained by Blease (1977) using the first eight terms of the mean 
size series S ( p ) .  Recently (De'Bell and Essam 1983) this series was extended by five 
terms using the transfer matrix method with the result pc=0.382*0.001. In our 
previous calculation the transfer matrix method was found to be much less effective 
for the resistive susceptibility and instead the non-nodal graph technique was used. It 
was found that the resistive susceptibility for any acyclically directed lattice is given by 

X R ( P )  = *R(p)[s(p)12 

where YR(p) is the contribution to x R ( p )  from non-nodal graphs. For the simple 
cubic lattice we have listed all such graphs with up to eleven edges (there are 28 of 
these). The resulting rational coefficients of qR(p)  up to p" are shown in table 1. 
Using the known series for S ( p )  (Blease 1977, De'Bell and Essam 1983) we have 
calculated xR( p )  and the coefficients rounded to 26 digits are given in table 2. During 
the computation of the resistance of the subgraphs used to determine the weights in 
the graph expansion no negative flows occurred. 

The Pad6 analysis of the xR( p )  series gives rise to the pole-residue plot shown in 
figure 1, from which we estimate that xR(p) diverges with critical exponent yR = 
2.698+36Apc*0.004. Here Apc is the deviation from the assumed central value of 
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pc = 0.382. Since the uncertainty in the pc makes the largest contribution to the error 
in yR we consider that extension of the xR( p )  series to the length obtained by De'Bell 
and Essam (1983) for S (  p )  would not significantly improve our final estimate for yR. 

Table 1. ~ , ( p ) = 3 p - 9 p J + ~ ~ = , a , p " .  

6 -135 2 
7 294 5 
8 -2388 5 
9 85 901 115 

10 -30 305 193 8855 
11 54 556 528 845 842 7526 103 585 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0.300 000 000 000 000 000 000 000 00D+01 
0.18000000000000000000000000D+02 
0.810 000 000 000 000 000 000 000 00D+02 
0.315000000000000000000000OOD+03 
0.114 300 000 000 000 000 000 000 00D+04 
0.39015000000000000000000000D+04 
0.129 288 000 000 000 000 000 000 00D+05 
0.41 3 517 000 000 000 000 000 000 OOD+ 05 
0.13022096521739130434782609D+06 
0.400 521 109 260 304 912 478 825 52D+06 
0.122 106014 255 705 836 129 546 18D+07 
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Using the scaling formula for the conductivity exponent of the diode problem 
obtained by Redner (1982) 

t = l~f ( d -  1) VI- Vi1 

with lR = yR- y, we obtain t = 1.292* 2Apc*0.016. The values of y, vi, vI1 used in the 
above calculation were obtained by De’Bell and Essam (1983). The small coefficient 
of Ap, arises from the cancellation of the systematic errors. Using the result IApcl 6 0.001 
of De’Bell and Essam (1983) we obtain the biased estimates of yR and t quoted in 
the abstract. 
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